Experimental Investigation on Power Generation with Low Grade CO$_2$ Transcritical Power Cycle

Liang Lia, Yunting Gea, Xiang Luob, Savvas A. Tassoua

aRCUK National Centre for Sustainable Energy Use in Food Chains (CSEF), Institute of Energy Future, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK

bNational Key Laboratory of Science and Technology on Aero Engines Aero-thermodynamics, The Collaborative Innovation Centre for Advanced Aero-Engine of China, Beihang University, Beijing 10191, China
Background

• As a natural working fluid, CO$_2$ has been widely used in refrigeration and heat pump systems due to its zero ODP, negligible GWP and good thermophysical properties etc.;
• It can also be employed for power generation from low temperature heat resources;
• However, the comprehensive experimental analyses for a low temperature CO$_2$ power generation system operations and controls need to be further investigated and developed;
• Experimental analysis on the low temperature power generation system with T- CO$_2$ Rankine cycle have therefore been carried out and some meaningful results are presented.
Test rigs of CO$_2$ Transcritical Rankine Cycle (T-CO$_2$)

- The system consisted of a number of essential components including a CO$_2$ turbine/expander with generator, finned-tube air cooled condenser, liquid receiver, liquid pump and thermal oil-heated CO$_2$ gas generator.

- In addition, the test rig was fully instrumented with calibrated sensors, flow and power meters, as shown in Figure.
Test rigs of CO$_2$ Transcritical Rankine Cycle (T-CO$_2$)

- The plate gas generator was heated indirectly by exhaust flue gases of an 80kWe CHP unit through a thermal oil circuit and a thermal oil boiler installed inside the CHP exhaust.

- The CO$_2$ turbine was integrated with a high speed and permanent magnet synchronous generator with rated rotation speed up to 18,000 rpm.

Photographs of the system components.
Test results of CO₂ Transcritical Rankine Cycle (T-CO₂)

Variation of operating parameters for the system test.

<table>
<thead>
<tr>
<th>Thermal oil inlet temperature (°C)</th>
<th>Thermal oil flow rate (kg/s)</th>
<th>Condenser inlet air flow temperature (°C)</th>
<th>Condenser inlet air flow rate (m³/s)</th>
<th>CO₂ mass flow rate (kg/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>142.4~144.4</td>
<td>0.25~0.5</td>
<td>22.5~23.5</td>
<td>4.267</td>
<td>0.2~0.3</td>
</tr>
</tbody>
</table>

Variations of CO₂ turbine pressures with different CO₂ pump speeds and heat source flow rates

Variations of CO₂ pump pressures with different CO₂ pump speeds and heat source flow rates
Test results of T-CO$_2$ (Cont.)

Variations of CO$_2$ turbine and pump temperatures with different CO$_2$ pump speeds and heat source flow rates
Test results of T-CO$_2$ (Cont.)

Variations of CO$_2$ turbine powers with different CO$_2$ pump speeds and heat source flow rates

Variations of turbine efficiencies with different CO$_2$ pump speeds and heat source flow rates
Performance of oil-heated CO$_2$ gas generator

Temperature vs. heat transfer rate diagrams of lower thermal oil flow rate and higher CO$_2$ flow rate

Temperature vs. heat transfer rate diagrams of lower thermal oil flow rate and lower CO$_2$ flow rate

Temperature vs. heat transfer rate diagrams of higher thermal oil flow rate and higher CO$_2$ flow rate
Control Strategies

Relations between thermal oil mass flow rates and CO₂ turbine inlet temperatures

Relations between CO₂ mass flow rates and CO₂ turbine inlet temperatures
Control Strategies (Cont.)

Relations between thermal oil mass flow rates and CO₂ turbine inlet pressures

\[y = 0.0324x - 2.4953 \]
\[R^2 = 0.9521 \]

Relations between CO₂ mass flow rates and CO₂ turbine inlet pressures

\[y = 0.0041x - 0.1202 \]
\[R^2 = 0.9098 \]
Conclusions

• A small-scale T-CO₂ test rig was developed and tested to investigate the effects of two important operating parameters including heat source mass flow rate and CO₂ mass flow rate on the system performance.

• The measured and calculated turbine power generations and overall turbine efficiency all decreased with higher CO₂ mass flow rate.

• At higher thermal oil mass flow rate, the measured and calculated power generations, turbine isentropic and overall efficiencies and gas generator heat capacity were all increased.

• The CO₂ temperature and pressure at the turbine inlet are two important parameters which can be efficiently controlled by both thermal oil flow rate and CO₂ mass flow rate based on measurements.
Thank you...

Questions?