Diffuser performance of centrifugal compressor in supercritical CO$_2$ power systems

Samira Sayad Saravi, Savvas Tassou

Brunel University London, Institute of Energy Futures, Centre for Sustainable Energy Use in Food Chains

Uxbridge, Middlesex UB8 3PH, UK
Layout

• Background
• Literature review
• Real gas effect
• Modelling setup
• Results
• Conclusions
Background

• energy and industry-related emissions are predicted to be more than double by 2050 compared to 1990 levels [1],
• CO₂ is a high density working fluid and is CO₂ is a low-cost, non-flammable and non-toxic [2],
• sCO₂ systems were originally conceived for nuclear and concentrated solar power generation applications [3, 4]
Review (experiment)

Tokyo Institute of Technology, 2012 [5]

Review (modelling)

Baltadjiev, Lettieri and Spakovszky, 2015 [7]
Behafarid, Podowski, 2016 [8]
Pecnik, Rinaldi and Colonna, 2012 [9]
Real gas effect on one-dimensional flow

\[
\frac{d}{dx} (\rho u A) = 0 \quad \text{and} \quad u du + \frac{1}{\rho} dp = -dw_{shaft}
\]

\[
\frac{dM^2}{M^2} = -2 \left[\frac{1 + (\Gamma - 1)M^2}{(1 - M^2)} \right] \frac{dA}{A} + \left[\frac{1}{(1 - M^2)} \frac{1}{u} \left(\frac{\partial v}{\partial T} \right)_p \frac{\Gamma}{(\Gamma - 1)} \right] \frac{dw_{shaft}}{C_p}
\]

\[
\frac{1}{A} \frac{dA}{dx} \rightarrow \frac{1}{2(\Gamma - 1)} \frac{1}{v} \left(\frac{dv}{dT} \right)_p \frac{dw_{shaft}}{C_p dx}, \quad M \rightarrow 1
\]

\[
\Gamma = 1 + \frac{\rho}{C} \left(\frac{\partial C}{\partial \rho} \right) = \frac{1}{2} \rho^3 C^4 \left(\frac{\partial^2 v}{\partial P^2} \right) = \frac{v}{2C^2} \left(\frac{\partial^2 P}{\partial v^2} \right) \quad \text{and} \quad C^2 = \left(\frac{\partial P}{\partial \rho} \right)_s = -v^2 \left(\frac{\partial P}{\partial v} \right)_s > 0
\]
Modelling setup

<table>
<thead>
<tr>
<th>Γ</th>
<th>Behaviour (Thompson, 1971 [10])</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma > 1$</td>
<td>Sound speed increases with P; behaviour of usual substances</td>
</tr>
<tr>
<td>$\Gamma = 1$</td>
<td>Constant sound speed; P a linear function of ρ</td>
</tr>
<tr>
<td>$0 < \Gamma < 1$</td>
<td>Sound speed decreases with P</td>
</tr>
<tr>
<td>$\Gamma = 0$</td>
<td>P a linear function of V</td>
</tr>
<tr>
<td>$\Gamma < 0$</td>
<td>Negative curvature of isoentrope; behaviour of unusual substances</td>
</tr>
</tbody>
</table>
Results

![Graph showing pressure vs. S/C ratio with markers VN13 and VN17.]

![3D model showing Mach Number distribution.]
Results (density and sound speed)

(VN13: - - , VN17: —)
Conclusions

• explicit representation and characterisation of the real gas effects of the fluid on the one-dimensional internal flow behaviour and related mechanisms
• The changes in the flow properties have been examined by changing the cross-sectional area in a selected vaned diffuser
• modelling is performed with ANSYS CFX 17.1, including a generated lookup table from REFPROP for CO₂ real gas properties
• the results show that the model with 17 vanes has higher pressure drop in throat and can lead to flow instability
• it confirms the fact that the higher number of vanes leads to smaller operation range for this specific diffuser design
• further investigation is needed to confirm this outcome for higher and lower incidence angle in leading edge
Thank you

Samira Sayad Saravi
Savvas Tassou

Brunel University London, Institute of Energy Futures, Centre for Sustainable Energy Use in Food Chains

Uxbridge, Middlesex UB8 3PH, UK
References

