Construction of an sCO₂ Joule-Brayton Cycle For High Exergy Heat Source Conversion To Electricity

Romain Loeb, Giuseppe Bianchi, Gaël Levêque, Arthur Leroux, Savvas A. Tassou

Brunel University London
Enogia, Marseille

Paphos, 18/10/2018
Summary

- The I-ThERM project
- sCO_2 scope & market
- Cycle description

 Frame components - CAD & assembly

 CGT - CAD & assembly

 First test

- Conclusion and next steps
I-ThERM Project aims to

Investigate, design, build and demonstrate innovative **plug and play** waste heat recovery solutions to facilitate **optimum utilisation of energy** in selected applications with high replicability and energy recovery potential in the temperature range 70°C – 1000°C.
sCO$_2$ targeted market

Potential high grade energy sources at the selected range

Improve actual power generation cycles

Industrial waste heat recovery
- Iron & steel
- Chemical processes
- Cement
- Glass

...

Why sCO$_2$ to power generation?

Reachable working conditions

High energetic density

High compressibility

Great compactness

Up to 60% efficiency
Depending on the configuration

Clean, harmless & cheap fluid

Thermodynamic cycle

Isentropic CFD efficiency

- Turbine 70%
- Compressor 76%

Cycle efficiency

About 25%
General overview

Small scale installation

Max 780 °C Heat source

Flexible Up to 830 kWth

20 °C Cold source

50 kWth

500 kWth

Hot Heat Exchanger

Turbine

Generator

Compressor

Cold Heat Exchanger

630 kWth Regenerator

2.08 kg/s

Hot Loop

sCO2 Loop

Cold Loop

Max 780 °C

Heat source

Flexible

Up to 830 kWth

20 °C

Cold source

500 kWth
Brunel test rig

- CGT unit
- Plug & Play container 18ft
- recuperator
- Heat source
- sCO₂ heater
- cooler

Brunel University London
Enogia, Marseille
CGT Unit P&ID

Highly integrated unit

Electricity
Automation
Mechanic
Cooling
Lubrication

Inverter

Cooling loop

Water tank

Connecting flanges

Oil separator

Drain

Lubricant loop

To sCO2 loop
CGT Unit CAD

- Cooling fans
- Sliding CGT frame
- Electrical cabinet
- Inverter
- Drain compressors
CGT CAD

Fully instrumented

Compact

Pressure resistant pipings & parts
Mechanical CGT Design

- Volute
- Labyrinth seals
- Rotational guidance
- Permanent magnets
- Cooler
- Coils
- Compressor
- Turbine
- Drain
- Cooling
- Casing maintained via tie rods

Drain from the generator air gap to remain at a subcritical (gaseous) state
Skid assembly process

Components installation

Custom welding...

... & passivation

Strong attachment

Brunel University London
Enogia, Marseille

RCUK Centre for Sustainable Energy Use in Food Chains
CGT assembly process

Magnet hooped on the shaft

Several balancing works

Balancing zone 1

Balancing zone 2

P1

P2

Resistant volutes

Cooler and coils.... mounted in the casing

Wheels

Brunel University London
Enogia, Marseille

RCUK Centre for Sustainable Energy Use in Food Chains
First check up rotational tests

Showed good mechanical and electrical sizing
Conclusion

- **Promising efficiency** and **compactness** compared to **power generated** thanks to high rotational speed wheels & CO₂ properties

- **Plug&Play philosophy** ready for high grade heat sources

- Manufacturing difficulties due to the **harsh thermodynamic working conditions**, but can be lifted with off-the-shelffe components

Future work

- Finish the system assembly and automatization
- Installation in the container at the final test bench
- One year test campaign

March 2019 to **February 2020**
Acknowledgments

BUL team
• Prof. Savvas A. Tassou
• Dr. Giuseppe Bianchi
• Dr. Samira Sayad Saravi
• Dr. Konstantinos M. Tsamos
• Dr. Lei Chai
• Mr. Matteo Marchionni

Enogia team
• Mr. Arthur Leroux
• Mr. Romain Loeb
• Mr. Norman Holaind
• Mr. Nicolas Goubet
• Mr. Gabriel Henry
• Dr. Gael Leveque
• Mr. Maxime Leconte

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 680599
Thanks for you attention

Romain LOEB
Project Manager
romain.loeb@enogia.com
+33 6 88 25 87 99
19 avenue Paul Héroult
13015 Marseille
Enogia