Environmental impacts of poultry litter gasification for power generation

Harish Jeswani and Adisa Azapagic

CSEF
Sustainable Industrial Systems
The University of Manchester

Paphos, Cyprus
17 Oct 2018
Overview

- Context
- Approach
- Results
- Conclusions
The poultry sector is growing globally

A large quantity of litter is generated

Litter traditionally used as a fertiliser

Energy recovery through combustion, pyrolysis & gasification

Gasification offers some advantages
Goal and scope

➢ To assess environmental impacts of electricity production in IGCC using poultry litter

➢ Unit of analysis (functional unit):
 ➢ generation of 1 kWh of electricity
Poultry litter collection

Storage

Gasification plant operation

Syngas cleaning

Gas turbine operation

Electricity (to national grid)

Plant components

Energy & other inputs

Ash to be used as a fertiliser

Waste for disposal

Recovered heat

Electricity for parasitic use
Data and assumptions

- IGCC Plant size: 250 kW
- Efficiency: 43% (gross) & 36% (net)
- Gasification modelling via ASPEN
- N₂O emissions during storage
- Credits for ash as a fertiliser
- Background LCA data: Ecoinvent
- LCA modelling: Gabi software

Key characteristics of poultry litter*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (%)</td>
<td>25</td>
</tr>
<tr>
<td>LHV (MJ/kg dry basis)</td>
<td>9.7</td>
</tr>
<tr>
<td>Ash (% dry basis)</td>
<td>21.6</td>
</tr>
<tr>
<td>C (% dry basis)</td>
<td>37.5</td>
</tr>
<tr>
<td>O (% dry basis)</td>
<td>30.6</td>
</tr>
<tr>
<td>H (% dry basis)</td>
<td>5.1</td>
</tr>
<tr>
<td>N (% dry basis)</td>
<td>3.7</td>
</tr>
<tr>
<td>P₂O₅ (% dry basis)</td>
<td>4.3</td>
</tr>
<tr>
<td>K₂O (% dry basis)</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Comparison with fossil fuel alternatives

Carbon footprint (g CO2 eq./kWh):
- Poultry litter gasification: 42
- Natural gas: 470
- Coal: 977
- Oil: 1170

PED x 0.01 (MJ/kWh):
- Poultry litter gasification: 870
- Natural gas: 1080
- Coal: 1550
- Oil: 1550
Sensitivity analysis

- **Carbon footprint (g CO2 eq./kWh)**
 - Base case: 42
 - 2-week storage: 30
 - 6-week storage: 54
 - Ash landfilling: 62
 - Economic allocation: 50

- **PED x 0.01 (MJ/kWh)**
 - Base case: 14
 - 2-week storage: 14
 - 6-week storage: 14
 - Ash landfilling: 50
 - Economic allocation: 44

Legend:
- **Base case**
- **2-week storage**
- **6-week storage**
- **Ash landfilling**
- **Economic allocation**
Challenges

- Biomass gasification is still at demonstration stage
- Fouling due to tar formation
- Risk of agglomeration and sintering due to higher P & K content in poultry litter
- IGCC has 35% higher capital costs compared to conventional power plants
- Health & safety risks
Conclusions

- Energy recovery from poultry litter via gasification is an environmentally viable option.
- It has 10-30 times lower carbon footprint and 60-110 times lower primary energy demand.
- Reducing storage time of litter would reduce impacts further.
- Successful application will depend on reduction in installation costs.
Acknowledgements

This work is funded by the UK Research Council as part of the UK Centre for Sustainable Energy Use in Food Chains (CSEF)

Thanks to Alastair Martin and Andrew Whiting for providing some of the inventory data
Environmental impacts of poultry litter gasification for power generation

Harish Jeswani and Adisa Azapagic

CSEF
Sustainable Industrial Systems
The University of Manchester

Paphos, Cyprus
17 Oct 2018