Experimental investigations on a transcritical CO₂ refrigeration plant and theoretical comparison with an ejector-based one

Fabrizio Santinìa, Giuseppe Bianchib, Davide Di Battistaa

Carlo Villantea, Maurizio Orlandic

aUniversity of L’Aquila, Department of Industrial and Information Engineering and Economics, L’Aquila 67100, Italy
bBrunel University London, Center for Sustainable Energy Use in Food Chains, Uxbridge, Middlesex UB8 3PH, UK
cEPTA S.p.A., Milano, Italy

Paphos, 17/10/2018
Facts and figures about refrigeration

• 3 billion units worldwide

• 300 billion USD global annual sales

• 12 million people employed worldwide

Data refer to refrigeration, air conditioning & heat pumps
[IIR, 2015]
Facts and figures about refrigeration

• Electricity consumption 295 Mtoe (17.2% of global amount)

• 1680 MtCO$_2$ indirect emissions

• 2.1 MtCO$_2$ total carbon footprint

(6.5% of global amount)

Data refer to refrigeration, air conditioning & heat pumps
[IIR, 2015]
Outline

• The role of CO₂ in the refrigeration sector
• Experimental setup and baseline campaign
• Thermodynamic model of the ejector-based layout
• Energy and exergy comparison
• Future work
R744 (CO₂) as refrigerant

pros
- “Green” refrigerant GWP = 1; ODP = 0
- Natural refrigerant
- Low-cost
- Not toxic, not flammable, odorless
- Thermodynamic properties

cons
- Higher maximum pressure
- Increased leaks
- Greater system complexity
- Higher investment costs
- Not recommended for warm areas

F-Gas Reduction
EU Regulation n°. 517/2014
Experimental setup

Rated power is 18kW thermal and 12kW electric

G. Bianchi – Brunel University London
Experimental setup

<table>
<thead>
<tr>
<th>n°</th>
<th>Instrument</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>PT1000 RTDs</td>
<td>0.1 K</td>
</tr>
<tr>
<td>1</td>
<td>K-thermocouple</td>
<td>2.2 K</td>
</tr>
<tr>
<td>1</td>
<td>Foxboro IMT25 Mass Flow (Water/glycol)</td>
<td>0.25%</td>
</tr>
<tr>
<td>1</td>
<td>SITRANS FC MASS 6000 IP67 (CO2)</td>
<td>10% max</td>
</tr>
</tbody>
</table>
Experimental setup

G. Bianchi – Brunel University London
Experimental campaign

\[y = 0.1177x^2 - 5.3056x + 136.42 \quad R^2 = 0.9748 \]

\[y = 0.0053x^2 - 0.3398x + 7.3823 \quad R^2 = 0.8241 \]

\[y = 0.1177x^2 - 5.3056x + 136.42 \quad R^2 = 0.9748 \]

\[y = -0.0007x^2 + 0.0615x - 0.8024 \quad R^2 = 0.9714 \]

\[y = 0.0035x^2 - 0.2734x + 7.1993 \quad R^2 = 0.931 \]

- Higher external temperature
- Higher operating pressures to realize the transcritical cycle
- Compressor needs more power
- COP decreases

- Gas cooler outlet temperature increases
- Higher quality at the receiver
- COP decreases

\[COP = \left(1 - X_7\right) \frac{h_4 - h_2}{h_3 - h_4} \]

G. Bianchi – Brunel University London
Reference test case - Energy analysis

\[T_{\text{ext}} = 33.5^\circ C \]

\[m_{\text{comp}} = 0.103 \, \text{kg/s} \]

\[m_{\text{evap}} = 0.055 \, \text{kg/s} \]

\[\text{COP} = 1.83 \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>External temperature</td>
<td>33.5°C</td>
</tr>
<tr>
<td>CO₂ Mass Flow Rate</td>
<td>0.10 kg/s</td>
</tr>
<tr>
<td>Discharge temperature</td>
<td>115.0°C</td>
</tr>
<tr>
<td>Gas cooler outlet temperature</td>
<td>36.5°C</td>
</tr>
<tr>
<td>Gas cooler pressure</td>
<td>90.9 bar</td>
</tr>
<tr>
<td>Suction pressure</td>
<td>25.3 bar</td>
</tr>
<tr>
<td>Suction temperature</td>
<td>5.6°C</td>
</tr>
<tr>
<td>Superheat</td>
<td>15.7°C</td>
</tr>
<tr>
<td>Receiver pressure</td>
<td>34.8 bar</td>
</tr>
<tr>
<td>Evaporating pressure</td>
<td>25.3 bar</td>
</tr>
<tr>
<td>Evaporating temperature</td>
<td>-10.2°C</td>
</tr>
<tr>
<td>Gas cooler thermal power</td>
<td>28.0 kW</td>
</tr>
<tr>
<td>CO₂ critical pressure</td>
<td>73.8 bar</td>
</tr>
<tr>
<td>CO₂ critical temperature</td>
<td>31.1°C</td>
</tr>
</tbody>
</table>
Reference test case - Exergy analysis

Irreversibility breakdown

- GC: 42.58%
- ICMT: 27.19%
- EEV: 1.47%
- Evap: 7.43%
- Comp: 21.32%

Exergy efficiency: 29.4%

G. Bianchi – Brunel University London
Ejector-based layout

- Constant pressure mixing device
- Model developed in Matlab coupled with NIST database

Entrainment ratio
$$\mu = \frac{m_{evap}}{m_{comp}}$$

Ejector efficiency
$$\eta_{ej} = \mu \frac{(h_{3,isent} - h_3)}{h_7 - h_6}$$

G. Bianchi – Brunel University London
Regardless of the entrainment ratio the temperature of the \(\text{CO}_2 \) at the exit of the compressor is lower of about 15-25 K, producing a lower compression work up to 22 kJ/kg.
The entrainment ratio of the ejector affects the vapor quality downstream the ejector and, in turn, the ejector efficiency and the COP.
Ejector-based results

Irreversibility breakdown

<table>
<thead>
<tr>
<th>Component</th>
<th>Reference</th>
<th>Ejector retrofit</th>
</tr>
</thead>
<tbody>
<tr>
<td>COP</td>
<td>1.83</td>
<td>2.64 (+44%)</td>
</tr>
<tr>
<td>Exergy efficiency</td>
<td>29.4%</td>
<td>34.8% (+18%)</td>
</tr>
</tbody>
</table>
Conclusions

• Development of an industrial-scale facility for experimental CO₂ refrigeration research
• First experimental campaign at different external temperatures and exergy analyses
• Theoretical modelling of a constant pressure mixing ejector layout

• The comparison between experimental cases and ejector-based case highlights good improvements of Coefficient of Performance up to 40% and maximum temperatures lower of about 15-25K
• For 33.5°C, ejector-based exergy efficiency improves to 34.8% from 29.4%

• Future activities will aim at an experimental assessment of the ejector and other energy saving and recovery technologies
Experimental investigations on a transcritical CO₂ refrigeration plant and theoretical comparison with an ejector-based one

Fabrizio Santinia, Giuseppe Bianchib, Davide Di Battistaa

Carlo Villantea, Maurizio Orlandic

aUniversity of L’Aquila, Department of Industrial and Information Engineering and Economics, L’Aquila 67100, Italy
bBrunel University London, Center for Sustainable Energy Use in Food Chains, Uxbridge, Middlesex UB8 3PH, UK
cEPTA S.p.A., Milano, Italy

Paphos, 17/10/2018