ORC waste-heat recovery: integration challenges for existing medium size fossil fuel powered engines

Gaël Levêque, Romain Loeb, Gabriel Henry, Arthur Leroux

ENOGIA, 13015 Marseille

Paphos, 2018/10/17
Introduction - Basics of Organic Rankine Cycles
Introduction

• Most common choice source for ORC Waste Heat Recovery on engines: Hot exhaust gases of stationary gas engine
 - High temperature thus high efficiency
 - High power available
 - Stationary applications generally means less design constraints

• Most common technology of expanders:
 - Single or multi-stage turbine for high power → high specific power but high speed
 - Screw or scroll for low to medium power → lower speed, easier for small scales

However, another approach is possible!
Low temperature heat recovery

ENOGIA pushes forward heat recovery on engine water jacket

ORC system more reliable and safer:
- No contact between ORC and engine exhaust gas
- No exhaust back pressure
- ORC components at T < 100°C
- No hot spot => no risk of damaging the working fluid
- Hot source at constant T => easier system control
- No evaporator fouling

ORC system less costly:
- No high temperature material
- No special material to resist to acid compounds
- Integration to customer’s process easier (hot water loop)
- Lower pressure ratio, cheaper expander and pump

We think integration on hot water make a more sensible choice for customer:
- Lower CAPEX and OPEX
- Higher flexibility, can be fitted to any engine

ENOGIA built its success on low temperature ORC microplants on water loops
Presentation of Enogia

ENOGIA designs and produces Organic Rankine Cycle micro-powerplants that convert waste heat into electrical power.

- **Innovative** company founded in 2009. Head office and facilities in **Marseille, France**
- 35 employees
- Production with **local partners**
- More than 50 references in **19 countries**
- **Fastest growth** of turnover amongst all French cleantechs, winner of Deloitte Technology Fast 50
- **Strategic partnership** with the famous research group
- Welcomes a **strategic shareholder** in 2018
ENOGIA’S expander technology

- Enogia’s approach for compact expanders
 - Single-stage high-speed axial turbine, supersonic injector
 - Brushless generator directly on the shaft, immersed in the working fluid
 - High precision balancing of the whole shaft assembly
 - Lubrication with the working fluid

- Benefits vs volumetric expanders:
 - More reliable
 - More compact
 - More flexible
Case study 1: ORC100

- Specifications:
 - Heat recovery in engine water jacket of large gensets (typically over 1MW_{el})
 - Heat source from 70 to 95°C, up to 1.4 MW_{th}
 - Easy to integrate (water loop with standard ISO flanges)
 - Remote control and monitoring
 - Grid feeding and grid operator compliant
 - Target price: 2 000 €/kW
Case study 1: ORC100

• Targeted market:
 – Diesel gensets
 – Biogas plants (core business of Enogia)
 – Natural gas engines
 – Examples of manufacturers: Jenbacher, Caterpillar, Liebherr…
Case study 1: ORC100

- Turbine design
 - Radial inflow turbine selected:
 - High pressure drop
 - Part-load operation
 - Compactness
 - Two symmetric turbines to equilibrate axial efforts
 - Immersed brushless generator
 - Lubrication with working fluid
 - Expected performance: 0.80 isentropic efficiency
Case study 1: ORC100

System design: maximizing electric output

- High efficiency, high speed brushless generator → 97% efficiency
- Dedicated high efficiency inverter, 30-100KW output → 94% efficiency

→ Overall, 91% of the mechanical power is transformed to electricity

Designed by Mavel, tested at IFPEN test-bench:
Case study 1: ORC100

Prototype built
- Integration into a flexible trailer
- Hot side: brazed plate exchangers with ISO flanges
- Control and command with network access for remote monitoring
- Cold loop integrated:
 - Dry cooler
 - Circulator
 - Heat exchanger
→ Stand alone module
Case study 1: ORC100

• First tests – landfill biogas power plant
 – Heat source: hot water from several biogas- fueled CHP engines
 – Experimental results: at mid-load (50kW_e)
 • Evaporator efficiency: 90 %
 • Turbine stage efficiency: 75 %
 • Generator and inverter global efficiency: 91 %
 • Condenser thermal efficiency: 90 %
 • Overall heat-to-grid efficiency of 5 %
 • Results at partial load and warm weather, even better can be expected
Case study 1: ORC100

- **Current status**
 - Currently installed in IFPEN Solaize for in-depth characterization
 - Retrofitting under progress to incorporate Enogia’s recent technological upgrades
 - Changing fluid to R1233zd
 - **Update**: 53 kW produced with 80% of isentropic efficiency, retrofitting still under progress!
 - Toward the commercial ENO100LT
Case study 2: Efficientship

• Context and objectives
 – Life+ European project
 – Contribute to the on-board electricity production
 – Reduce the fuel consumption and operational cost / extend range
 – Qualify the cycle and parts for marine applications

• Specifications
 – 20 kWel ORC
 – Integrated on an existing 22 m fishing vessel
 – Hot exhaust gases as heat source
 – Sea water as cold source
Case study 2: Efficiency

• Constraints
 – Corrosive environment (piping)
 – Corrosive hot source (hot exhaust gases, sulphur)
 – Corrosion and clogging on the cold source heat exchanger (sea water)
 – Space
 – Wave-induced shocks and movements, list
 – Special certifications
 – …
Case study 2: Efficientship

- Technical solutions
 - “Dismantling” of the machine
 - Choice and sizing of heat exchangers (flooding, cleaning)
 - Choice, sizing and integration of the working fluid pump (discharge and cavitation issues)
Case study 2: Efficientship

• Results of the first test campaign
 – Under assessment for further publication
 – Integration successful despite physical constraints
 – Significant fuel saving measured
 – Up to 30% of the on-board electricity needs covered
 – Technical developments validated, know-how developed

• Next step
 – Larger ships – more room for series solution
 – Larger engines – water jacket as hot source
 – Thus, larger electricity production
Case study 3: ORC200

• Specifications
 – “Marine-proof” product
 – Water jacket as the heat source
 – Sea water as the cold source
 – Up to 2.4 MWth heat source (cargo ships, tankers…)
 – 200 kWel production
 – 2 x 2 x 2 m size, stackable for easy up scaling
 – Cooperation with AVID Technology for the generator

• Target price : 1 500 €/kW
Case study 3: ORC200

- Status:
 - Prototype constructed
 - Under on-land test at ENOGIA facility
Conclusions

• All components have a size! Even pipes and working fluid → ENOGIA’s small turbines allow compact design only if the whole cycle is carefully designed

• Spatial arrangement must be carefully considered

• The specificities of the final use of the product must be taken into account early in the design

• Cost, electricity output and integration objectives must be balanced to maximize the benefits of the installation

• Synergies can sometimes be found between objectives → Low temperature approach: affordable and easy integration
Thank you for your attention

Dr. Gaël Levêque
+33 4 84 25 60 17
+33 6 75 83 63 38

gael.leveque@enogia.com

www.enogia.com