Numerical investigations on a Trilateral Flash Cycle under system off-design operating conditions

Matteo Marchionnia, Giuseppe Bianchia, Savvas A. Tassoua, Obadah Zaherb, Jeremy Millerb

aBrunel University London, Uxbridge UB8 3PH, United Kingdom
bSpirax Sarco Engineering PLC, GL53 8ER Cheltenham, United Kingdom

Paphos, Cyprus 17-19 October 2018
Outline

• Overview on low grade waste heat potential

• Modelling activities on Trilateral Flash Cycle (TFC) system

• Off-design simulations

• Sensitivity analysis

• Conclusions and future work
Waste Heat Potential (WHP)

- Low thermal grade WHP in industry represents the 4% of the world final energy consumption
- Highest amount of heat rejected into the environment from the energy intensive industrial sectors
Waste Heat Potential

UK low thermal grade WHP accounts for almost 50 TWh (5.4% of the EU-28 WHP)
TFC vs ORC

<table>
<thead>
<tr>
<th>Heat recovery</th>
<th>Energy conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFC Single phase, high 2nd law efficiency</td>
<td>Larger density change, higher efficiency</td>
</tr>
<tr>
<td>ORC Two-phase, compact heat exchangers</td>
<td>Realistic expansion ratio, safer blade environment</td>
</tr>
</tbody>
</table>
1D modelling approach

- Heat recovery loop neglected
- Hot/cold water as heating/cooling source
- Map based components
- Power quantities purely mechanical
- REFPROP for fluid thermo-physical properties
Heater and condenser

OUTPUTS
- Refrigerant Quality
- Heat exchangers pressure drops
- Working fluid outlet temperatures

SWEP model
- Several working points
- Off-design outputs

GT-SUITE model
- Geometrical data
- Heat exchanger material
- Off-design points

Map
- Best fitting coefficient of Nusselt-Reynolds based correlations

Refrigerant mass flow rate
Plate Heat exchanger model

Temperatures of the hot/cold source
Heat transfer correlations

- 1-D discretization
- Heat transfer correlations depending on heat exchanger and fluid phase
- Rayleigh-Plesset equation to predict vapor formation and two-phase region extension
- Heat exchanger inertia depending on material and geometrical features
Pump and expander

PUMP
- Input data
 - Revolution speed
 - Pressure rise
 - Power consumption

EXPANDER
- Intake manifold
- Expander cells
- Exhaust manifold
- Outlet pipe
 - Scalar variables
- Inlet pipe
 - Vector variables
- Heater
- Inlet boundary conditions
- Outlet boundary conditions

Process data
- Interpolation between 2000 and 3500 RPM
- Isentropic efficiency from power consumption

Performance maps
Reference conditions

<table>
<thead>
<tr>
<th>System performance</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat load [kW]</td>
<td>2001</td>
</tr>
<tr>
<td>Heat rejected [kW]</td>
<td>1917</td>
</tr>
<tr>
<td>Pump power consumption [kW]</td>
<td>23</td>
</tr>
<tr>
<td>Expanders power [kW]</td>
<td>110</td>
</tr>
<tr>
<td>Net power output [kW]</td>
<td>86</td>
</tr>
<tr>
<td>Expander efficiency [%]</td>
<td>74.0</td>
</tr>
<tr>
<td>Thermal efficiency [%]</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Heat load: 2001 kW
Heat rejected: 1917 kW
Pump power consumption: 23 kW
Expanders power: 110 kW
Net power output: 86 kW
Expander efficiency: 74.0%
Thermal efficiency: 4.3%
Off-design simulation matrix

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Reference</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature heat source [°C]</td>
<td>75</td>
<td>85</td>
<td>95</td>
</tr>
<tr>
<td>mass flow rate hot source [kg/s]</td>
<td>5.84</td>
<td>7.84</td>
<td>10.19</td>
</tr>
<tr>
<td>Expanders speed [RPM]</td>
<td>3000</td>
<td>4500</td>
<td>6000</td>
</tr>
<tr>
<td>Pump speed [RPM]</td>
<td>2500</td>
<td>3000</td>
<td>3500</td>
</tr>
<tr>
<td>Control valve opening</td>
<td>9%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Expander revolution speed

- Expander efficiency considerably affected by its revolution speed
- Maximum power occurs at the optimal expander operating point (pump power fixed by the speed)
- The highest quality of the refrigerant occurs close to the optimal operating point of the expander
Pump revolution speed

- Expander performance barely affected by a change in the pump revolution speed (drop of the volumetric efficiency caused by a lower refrigerant quality is balanced by the increased mass flow rate of the working fluid due to the rise of the pump speed).

- Net power output decreases due to increased pump power consumption.

- Cycle efficiency drops due to net power output decrease and heat recovery increase.
Hot source inlet temperature

- No influence on the expander efficiency
- Greater impact on outlet quality at the heater than on the cycle pressure ratio
- Higher power output is due to a greater volume flow rate at the expander inlet
Hot source mass flow rate

Same effects than previous case but with smoother trends
Control valve opening area

- Refrigerant quality at the expander inlet, and so the power output, increase when the control valve is operated.
- No effect is shown on the expander efficiency.
- Thermal efficiency resembles the net power output trend (thermal load fixed).

https://doi.org/10.1016/j.ijrefrig.2018.02.001
Sensitivity analysis

- The expander revolution speed and the hot source inlet temperature present a more pronounced effect on the system power output.

- Pump revolution speed and control valve opening affect deeply the refrigerant quality at the expander inlet.
Conclusions

• The closing of the control valve increases the refrigerant quality at the expander inlet and consequently the power output of the machine

• The expander revolution speed should be varied in a narrow range close to its optimal operating condition

• The hot source inlet conditions affect deeply the net power output of the system due to a higher refrigerant quality at the expander inlet rather than an increased expansion ratio across the machine
Future work

• Coupling of the pump and expander with electric machine

• Friction modelling in the twin screw expander

• Experimental validation of the model implemented through an industrial scale prototype unit

• Development of a control system to regulate and optimize the refrigerant quality at the expander inlet
Acknowledgements

Research presented in this paper has received funding from: (i) Innovate UK (project no. 61995-431253), (ii) Engineering and Physical Sciences Research Council UK (EPSRC), grant no. EP/P510294/1 and (iii) Research Councils UK (RCUK), grant no. EP/K011820/1.